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Abstract 

Background: When chemical health hazards have been identified, probabilistic dose-response 

assessment (“hazard characterization”) quantifies uncertainty and/or variability in toxicity as a 

function of human exposure.  Existing probabilistic approaches differ for different types of 

endpoints or modes-of-action, lacking a unifying framework.  

Objectives: Developing a unified framework for probabilistic dose-response assessment.   

Methods: We establish a framework based on four principles: (1) individual and population 

dose-response are distinct; (2) dose-response relationships for all (including quantal) endpoints 

can be recast as relating to an underlying continuous measure of response at the individual level; 

(3) for effects relevant to humans, “effect metrics” can be specified to define “toxicologically 

equivalent” sizes for this underlying individual response; and (4) dose-response assessment 

requires making adjustments and accounting for uncertainty and variability.  We then derive a 

step-by-step probabilistic approach for dose-response assessment of animal toxicology data 

similar to how non-probabilistic reference doses are derived, illustrating the approach with 

example noncancer and cancer datasets. 

Results: Probabilistically-derived exposure limits are based on estimating a “target human dose” 

HDM
I, which requires risk management-informed choices for the magnitude (M) of individual 

effect being protected against, the remaining incidence (I) of individuals with effects ≥M in the 

population, and the percent confidence.  In the example datasets, probabilistically-derived 90% 

confidence intervals span a 40-60-fold range for HDM
Is where I=1% of the population 

experiences ≥M=1%-10% effect sizes. 
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Conclusions: While some implementation challenges remain, this unified probabilistic 

framework can provide substantially more complete and transparent characterization of chemical 

hazards and support better-informed risk management decisions. 
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Introduction 

 While the process of identifying human health hazards of chemicals has evolved 

substantially over time with advances in weight of evidence determination, mode of action 

(MOA), and systematic review (e.g., Meek et al. 2013; NRC 2011; U.S. EPA 2005; Woodruff 

and Sutton 2014), practices for quantitative dose-response assessment to characterize those 

hazards and inform risk management rely largely on approaches that have shown relatively small 

changes since they were first used.  For assessment of non-cancer effects, it is still common to 

derive exposure limits by dividing a no observed adverse effect level (NOAEL) or a benchmark 

dose lower confidence limit (BMDL) derived from a chronic study by a generic “uncertainty 

factor” of 100 (also known as a “safety,” “assessment,” or “extrapolation” factor), although using 

chemical-specific “adjustment” factors (CSAFs) or data-derived extrapolation factors (DDEFs) 

is increasingly encouraged (IPCS 2005; U.S. EPA 2014a).  Exposure limits for carcinogens that 

are genotoxic or without an established non-genotoxic MOA are usually based on other 

approaches, in particular the linear extrapolation approach (EFSA 2005; U.S. EPA 2005), 

although more recently the margin-of-exposure approach has been suggested even for genotoxic 

carcinogens (Barlow et al. 2006; Benford et al. 2010; O’Brien et al. 2006) .  

 While procedurally straight-forward, these practices are most amenable to risk 

management decisions where the margins between calculated exposure limits and actual or 

anticipated exposures are large enough to be of little or no risk management concern.  For 

instance, the safety factor approach results in an exposure limit (acceptable daily intake [ADI], 

reference dose [RfD]) generally presumed to be “safe” (e.g., having “reasonable certainty of no 

harm”).  However, the conclusion that exposures at or below this level would not result in 
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appreciable health risks is typically not based on further quantitative substantiation. For 

exposures higher than such an exposure limit, the only statement that can be made is that risks 

“cannot be excluded,” without any quantitative characterization of what the extent of potential 

health effects might be.  Thus, if reducing exposures to the level of the derived exposure limit is 

challenging (e.g., economically, practically, or politically), then there is no way to weigh the cost 

of exposure reduction against its likely human health benefits.  Moreover, there may be a 

residual risk at, or even below, the exposure limit, and this residual risk may vary among 

different chemicals and/or exposure scenarios.  

 To address these disadvantages, a probabilistic approach to hazard or risk 

characterization has been advocated by several risk assessment researchers (Baird et al. 1996; 

Evans et al. 2001; Hattis et al. 2002; Slob and Pieters 1998; Swartout et al. 1998), as well as by 

several expert panels (NRC 1996; NRC 2009; SAB 2002).  While most of the work has focused 

on characterization of non-cancer effects, NRC (2009) revisited the question of unifying 

assessment of cancer and non-cancer effects.  While some of the recommendations of NRC 

(2009) as to default approaches to low-dose extrapolation have been controversial (Abt et al. 

2010; Pottenger et al. 2011; Rhomberg 2011; Rhomberg et al. 2011), deciding on such science 

policy questions (as “default” options clearly are) does not preclude moving forward with 

developing a unified probabilistic framework for all types of endpoints. 

 This paper presents such a unified probabilistic framework, developed in tandem with an 

international harmonization project (IPCS 2014) on uncertainty in human dose-response 

assessment (“hazard characterization” in WHO/IPCS nomenclature).  It retains the usual “two-

part” process as employed in the current non-probabilistic (“deterministic”) approaches for 
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quantitative dose-response assessment: (1) dose-response analysis of an experimental or 

observational dataset of health effects resulting from chemical exposure; and (2) inference (or 

“extrapolation”) as to the potential effects in the target human population.  The second part needs 

to account for differences in characteristics (e.g., species, exposure duration) between the dataset 

analyzed and the human population of interest for risk assessment.  In terms of the usual 

deterministic approach of dose-response assessment, the determination of the point of departure 

(POD) may be regarded as the first part and the extrapolations addressed by uncertainty factors 

(interspecies, intraspecies, subchronic-to-chronic, etc.) as the second part.  Although the basic 

procedure appears unchanged, probabilistic assessment requires more precise definitions of each 

step, and thus also promotes greater transparency as to the biological and quantitative 

assumptions underlying the dose-response assessment.  In particular, the framework we propose 

here provides a theoretical basis for human dose-response assessment, where all underlying 

concepts are explicitly defined and logically interrelated. In this way, it is fully transparent as to 

what the various computational procedures represent, and how the results can be interpreted.  

This paper is organized as follows.  In “Methods,” we first set out the four fundamental 

principles that underlie the unified probabilistic framework.  Additionally, we lay out a 

prototypical approach to implement the unified framework for human-relevant animal toxicology 

data.  In the “Results,” we illustrate the approach by deriving probabilistic exposure limits from 

example noncancer and cancer datasets using probability distributions for uncertainty derived 

from historical data (see Supplemental Materials, Table S1, for datasets and computer code).  In 

“Conclusions,” we discuss implementation issues and identify data needs (also see Supplemental 

Material, Additional applications and extensions).   
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Methods 

Fundamental Principles  

Principle 1. Individual and population-level dose-response 

 The starting point of this framework is that a conceptual distinction exists between effects 

on the individual and effects on the population.  In particular, the effect of exposure at the level 

of the individual is the magnitude of a measure of toxicological effect.  The result of a fixed 

exposure in a population will be different magnitudes of effect in different individuals in that 

population.  Therefore, for a particular magnitude of effect, the result in the population is 

expressed as an incidence.  In the present framework, the magnitude of change needs to be 

ordinally related to severity – so a greater magnitude constitutes a more severe effect.  For 

instance, a body weight (BW) decrease of 20% is more severe than a BW decrease of 10%, and a 

moderate liver lesion is more severe than a mild liver lesion.  Thus, for a monotonic dose-

response in an individual, it may be imagined that a higher exposure will, for any given endpoint, 

lead to more severe effects.  In a population, increasing exposure levels will result in 

simultaneously increasing both incidence and severity: more and more individuals will suffer 

from more and more severe effects.   

 For convenience, we establish the notation whereby human dose or exposure is denoted 

HD, the magnitude of effect is denoted by M, and incidence is denoted I.  Because M is assumed 

to have an ordinal relationship with severity, incidence can be characterized as the incidence of 

effects of magnitude equal or greater than M, denoted I≥M.  Because it is customary to discuss 

“incidence” in terms of effects that may be of concern, the simpler notation HDM
I will be used as 

shorthand for HD(I≥M).  Additionally, an asterisk (*) will be used to indicate fixed, or target 
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values, such as a “critical effect size” (M*), target human dose (HD*), or target incidence level 

(I*).   

Given these definitions, the output of a human dose-response assessment is concerned 

with the quantitative relationships among HD, M, and I, along with their uncertainty.  We focus 

on the most common type of output, which is developing a human health-based exposure limit 

(some other types of outputs are discussed in Supplemental Materials, Performing a population 

assessment).  In our notation, this means estimating a target human dose, HD*, which is regarded 

as a function of a two-dimensional protection goal: the target level of incidence (I*) and the 

specified level of effect magnitude (M*), both of which may be selected based on risk 

management considerations.  Specifically, it is the dose at which only a small fraction of the 

population (low incidence of I*) will experience effects ≥ M*, which can be written  

 HD* = HD(I*≥M*) = HDM*
I*. (1) 

For instance, one could write HD(1%≥10%BW) = HD10
01 for the dose at which only 1% of the 

population has greater than 10% change in BW.     

Principle 2. Continuous parameters underlying all observed dose-response endpoints  

 The second element of this framework is that observed dose-response relationships for all 

endpoints can, at the individual level, be recast as relating to an underlying continuous measure 

of response.   Obviously, this principle applies to endpoints that are directly observed as 

continuous data.  In that case, the observed dose-response for the average responses as a function 

of dose may be imagined to reflect the dose-response in an individual animal (viz. the average 

animal), even though an individual’s dose-response is not directly observable in most 
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toxicological studies.  Endpoints that are generally measured as quantal response rates in a study 

population require some additional discussion. Below we discuss two options, briefly indicated 

as “deterministic” and  as “stochastic” quantal endpoints (Slob et al 2014).  

 Many quantal endpoints, such as in histopathology, are ordinally scored (e.g., minimal, 

mild, moderate, severe).  Such endpoints can be considered as gradually increasing in magnitude 

at the individual level, but are reported in “bins”, or severity categories, rather than as a 

continuous measure.  In this way, the reported incidences can be thought of as relating to a single 

category (or a limited number of categories) of severity, while for other severities the incidences 

are not reported.  In fact, any continuous dataset can be “quantized” and transformed into such a 

quantal (or ordinal) dataset by setting one (or more) cut points, resulting in incidences Y 

associated with each cut-point.  For instance, changes in hematocrit from the mean level in the 

controls can be divided into <5% and >5%, and the fraction of animals below and above the 5% 

cut-point can treated as quantal data.  In this case, the effect dose for a 5% change in the 

continuous hematocrit data, i.e., ED05, is equal to the effect dose for a 50% quantal response, 

EDY=50%, as illustrated in Figure 1.  This concept of quantal endpoints has previously been 

discussed in Slob and Pieters (1998). 

 Therefore, when quantal data can be viewed as reflecting the incidence of a continuous 

effect above/below a “determined” cut-point equal to M*, then the endpoint is referred to as a 

deterministic quantal endpoint.  This is generally appropriate for effects that can occur in 

different degrees of severity.  Furthermore, for the purposes of dose-response data analysis, the 

ED50 from the quantal response data would be used to estimate the EDM* corresponding to M* of 

the underlying continuous data.  When the available dose-response data report the incidences 
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related to various severity categories, then one of them may be chosen as being minimally 

adverse. When they only report the incidences related to a single severity category, it may occur 

that this severity is more than minimally adverse, so that additional uncertainty arises.   

However, not all quantal effects may be derived from applying a cut-point to an 

underlying continuous variable.  Some effects appear to have discrete outcomes, without an 

underlying gradually increasing level of severity. An example of such an endpoint is 

malformations, which often do not show different degrees of severity: it is there or it is not. 

Cancer may be considered another example, since a particular tumor is present or not (ignoring 

observational practicalities).  For such endpoints, an alternative interpretation of the dose-

response is possible: the observed incidences at each dose are considered as resulting from a 

“stochastic” process, where the observation that an individual animal has a tumor or not is 

analogous to drawing a lottery-ticket, with probability equal to the expected incidence at that 

dose (and time of observation).  That is, given all relevant circumstances for the particular 

individual (such as genetic make-up, experimental conditions), the effect is not fully determined, 

but rather any particular animal may be (un)lucky or not.  If it were possible to perform a study 

in which all animals were identical, and identically treated (except the dose, but without dosing 

errors), then the quantal dose-response would estimate the individual probability of effect. In 

this case, the observed incidence Y is treated as an estimate of the underlying individual 

probability of effect M, so M* would correspond to an incidence Y*=M*, as depicted in Figure 2.  

This concept of quantal endpoints has previously been discussed in Slob et al. (2014). 

Therefore, when quantal data are assumed to reflect the individual probability of an 

outcome as a result of a stochastic process, then the endpoint is referred to as a stochastic 
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quantal endpoint.  In reality, there are always small differences between animals (including the 

experimental conditions), which will have some impact on the dose-response.  However, this 

additional impact is generally not separately distinguishable from the dose-response data. This 

inter-individual variability might be assumed to be relatively small in the study population and 

hence ignored.  If so, the observed quantal dose-response approximates the individual probability 

of effect as a function of dose.  

 Whether the “deterministic” or “stochastic” interpretation of quantal endpoints is correct 

remains uncertain, since even for endpoints such as cancer or malformations, it might be the case 

that the effect in an individual subject is evoked deterministically as soon as a given internal dose 

in that individual is reached.  For risk assessment, the distinction between the two interpretations 

is important for the following reason.  In the deterministic interpretation, the animal dose-

response curve reflects the experimental variation and errors in the animal study, and therefore 

its shape (e.g., slope) would not be relevant information for predicting risks in humans.  In the 

stochastic interpretation, the dose-response curve may be regarded as a model for the human 

individual probability of effect, and therefore its shape would be relevant as information for 

human risks.   

Principle 3. Selecting a basis for inference: the “effect metric”  

 The third fundamental element in this framework is that inferences are made on the basis 

of a selected effect metric that defines “toxicological equivalent” magnitudes of effect.  This 

effect metric should reflect the effect size in such a way that it applies across species (or 

populations) as well as across individuals within a species (or population). Changes of the same 

magnitude in this metric are considered to reflect equal toxicologically-induced changes.   
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Additionally, the magnitude of effect should also be ordinally related to severity at the 

level of the individual.  For a continuous endpoint, severity increases with an increase in the 

percent change of a continuous endpoint (e.g., 5% → 7% decrease in hematocrit).  For a 

deterministic quantal endpoint the severity is related with the category of effect (e.g., less severe 

than “mild” lesions ! “mild” or more severe liver lesion).  For a stochastic quantal endpoint, 

severity is related to the probability of experiencing the effect (e.g., 1% → 2% individual 

probability of cancer).  

Equipotent doses are therefore defined as doses that elicit the same size of effect metric. 

Thus, individuals with the same equipotent doses (at all effect sizes) are defined as equally 

sensitive to the chemical for the endpoint.   

Note that it is assumed that the effect has already previously been determined to be an 

appropriate basis for making inferences about human health effects – e.g., that the effects 

observed in the test animal are relevant to humans.  In this context, “relevance” only needs to be 

determined in the qualitative sense: Could a similar effect occur or in humans, or not? When the 

answer is yes, quantitative differences, including large differences that are expected based on 

MOA considerations, should be addressed explicitly and quantitatively, taking uncertainty into 

account as well (e.g., using a probabilistic CSAF or DDEF – see Supplemental Material, 

Chemical-specific/data-derived toxicokinetics or toxicodynamics). 

The use of an effect metric does not necessarily imply that a given change is equally 

adverse in all individuals (or species). For instance, a 5% decrease in hematocrit may be 

considered as a toxicologically-equivalent effect metric in all individuals, but be adverse in 
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persons with anemia and non-adverse in healthy persons.  Finally, it should be noted that further 

inferences are possible from the toxicologically-equivalent effect metric to other measures of 

health effect, such as if an adverse outcome pathway can quantify the linkage between a change 

in effect metric and the likelihood of an adverse health outcome.  For instance, if the effect 

metric is a percent change in serum cholesterol, given an adverse outcome pathway linking 

serum cholesterol changes to cardiovascular disease, one might aim to estimate the risk of fatal 

myocardial infarction in a specific population.  Because variability in baseline serum cholesterol 

levels and other relevant risk factors (e.g., blood pressure, C-reactive protein, etc.) may differ 

across different populations (e.g., geographic regions, socioeconomic groups, lifestages, etc.), 

analyses of such “downstream effects” would necessarily be specific to the population(s) being 

assessed, even if the relationship between exposure and the effect metric is assumed to be the 

same across populations.  Such analyses may also be useful for socioeconomic analyses, since a 

fixed magnitude of effect may have different cost implications across human subpopulations 

(e.g., modifying insulin for diabetics versus non-diabetics).  This is discussed further in 

Supplemental Material, Extrapolation to downstream health endpoints and adverse outcome 

pathways and Figure S1. 

Principle 4. Making adjustments while accounting for variability and uncertainty 

 The final fundamental element in this framework is that dose-response assessment 

involves making inferences about the human population of interest for risk assessment (the 

“target population”) based on information obtained from a scientific study (the “study 

population”).  In the usual deterministic approach, these inferences are accomplished using the 

“uncertainty factors” to address (potential) differences due to differing species, human 
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variability, suboptimal study conditions, etc.  However, these factors are often mixtures of 

multiple elements that need to be clearly specified in a probabilistic framework.  Specifically, 

making inferences between the “study” and “target” populations involves making adjustments 

from the “study” to the “target” populations, while accounting for variability and uncertainty: 

• Adjustments are needed to correct for differences between the “study” and “target” 

population, in order to make inferences as to the potential health effects in the population 

of interest, with the relevant exposure conditions.  For example, on average across 

chemicals, the dose in mg/day eliciting the same effect differs between species due to 

differences in body size. The usual (implicit) adjustment is to divide the dose by body 

weight, which is also intended to normalize across individual subjects in the (study or 

target) population. But data increasingly support the idea that the dose in mg/kg BW may 

need additional adjustment by an allometric scaling factor to achieve equivalent effects 

(e.g., Bokkers and Slob 2007; Dedrick 1973; Kleiber 1932; Price et al. 2008; U.S. EPA 

2011a). Further, it might be known that, for any particular chemical, there are specific 

differences in toxicokinetic or toxicodynamic properties, which, for instance, make it 

plausible that one species would be more sensitive than others (e.g., resulting in a CSAF 

or DDEF). As another example, for some classes of effects, the expected relationship 

between a benchmark dose and duration of exposure might be reflected by Haber’s law 

(toxicity depends on the product of concentration and exposure time), which may be used 

to adjust the BMD to other exposure durations.  Usually, differences in study 

population/conditions and the target population/conditions can be better characterized 

(i.e., its uncertainty reduced) with additional data or analysis, and some can even be 
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eliminated by conducting new studies that require fewer adjustments (e.g., conducting a 

chronic study to replace a subchronic study).   

• Variability refers to intrinsic heterogeneity about a central tendency, usually between the 

individuals in the “target” population.  For example, different individuals (humans) will 

exhibit different sensitivity to toxic effects from the same exposure due to various 

sources of variability, including genetics, life-style, health status, etc.  Additional data or 

analysis can make an estimate of human variability more precise, but the variability itself 

cannot be eliminated. 

• Uncertainty refers to a lack of knowledge that could, in principle, be reduced with 

additional data or analysis.  Uncertainty can relate to the degree of adjustment (e.g., the 

exact allometric power with which to adjust for BW differences) but also to the degree of 

variability (e.g., how much more sensitive is the 95% individual relative to the median 

individual).  As another example, because toxicity studies have finite numbers of 

individuals per dose group, the BMD is uncertain.  This uncertainty can, in principle, be 

reduced by performing a larger or better designed study. Similarly, “missing studies” 

represent an uncertainty that can be quantified by meta-analyses comparing the overall 

differences between study types and capture that in a distribution (e.g., Hattis et al. 2002).  

In some cases, observed variability among chemicals in general can be used to inform the 

uncertainty in an adjustment factor for a specific chemical.  For instance, observed 

variability among chemicals in the dose ratio between subchronic and chronic studies for 

the same effect translates into uncertainty in the subchronic-chronic difference for a 

specific chemical for which no such data are available (e.g., Bokkers and Slob 2005). 
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As Table 1 shows, all typical uncertainty factors include an uncertainty component, along with 

an adjustment component, except for the intraspecies factor, where the adjustment component is 

replaced by a variability component.  

Prototypical Approach Implementing a Unified Probabilistic 
Framework 

 The principles described above underlying a unified probabilistic framework can be 

applied to any type of study or endpoint that has dose-response information, but here we address 

the most common case of using animal toxicology data.  It is assumed that the candidate critical 

endpoint(s) from the animal toxicology study is (are) considered relevant in the sense that similar 

effects might be expected to occur in humans (uncertainty in the qualitative cross-species 

concordance is not addressed in this framework).  The following additional assumptions are then 

made: 

• The toxicity data are from a study conducted in an (inbred) laboratory animal strain, with 

the purpose of mimicking what might happen in a typical human being. Intra-study 

variability reflects experimental errors (e.g., dosing errors, imperfectly controlled 

experimental conditions) and remaining differences (genetic, or otherwise) among 

animals. This is treated as statistical uncertainty in estimating a POD, which is supposed 

to mimic an equipotent dose in the typical human being. 

• Furthermore, in the effect range of interest, the continuous dose-response relationships 

are monotonic and parallel on a log-dose scale across species and across individuals 

within a species, so that the values (distributions) for any adjustments, variability, or 
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uncertainties are independent of the selected critical effect size M*.  Slob and Setzer 

(2014) found evidence consistent with this assumption.  

The basic steps of the procedure under these assumptions are as follows (see also Figure 3 and 

Table 2): 

1. Select a toxicologically equivalent effect metric and an associated critical effect size 

(M*), and conduct a benchmark dose analysis with benchmark response (BMR)=M* 

(Crump 1984) to derive the uncertainty distribution for the dose corresponding to M* in 

the animal !ADM*.  

2. Apply probabilistic interspecies and other adjustments to ADM* to derive the uncertainty 

distribution for the dose corresponding to M* in the median human !HDM*.   

3. Select a human variability distribution (e.g., lognormal), setting the median to HDM* with 

an uncertainty distribution as obtained in step 2. The measure of dispersion of this human 

variability distribution (such as geometric standard deviation, GSD = exp[σH]) has an 

uncertainty distribution, reflecting that we are uncertain about the degree variability 

among individuals. From this (uncertain) human variability distribution, we derive an 

(uncertain) human variability factor HVI* for ratio between the quantile corresponding to 

a selected target incidence (I*) value and the median, so that HDM*
I* = HDM* × HVI*.   

This output is an estimate of the HDM*
I* in the form of an uncertainty distribution, and any given 

level of confidence may be chosen for deriving an exposure limit (e.g., a “probabilistic RfD”), by 

taking the associated lower percentile of the uncertainty distribution of HDM*
I*.  Alternatively, 

the full uncertainty distribution can be combined with exposure information to inform risk 
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management decisions.  Details as to each step are described below along with Monte Carlo 

procedures for the overall calculation. 

Step 1: Estimating the animal dose corresponding to the critical effect size for the selected 
toxicologically equivalent effect metric 

 The purpose of this step is to establish the uncertainty distribution for ADM*, the animal 

dose associated with a specified effect size M* (= BMR) based on a specified toxicologically-

equivalent effect metric.   

The key issue in defining the effect metric is how to address baseline differences across 

species or individuals in order to make changes “comparable.”  For instance, a decrease of 10 g 

in a rat body weight does not compare to a 10 g change in human body weight.  For most 

(continuous) parameters, a percent change would be the obvious effect metric, being the only 

measure that may be defined as representing an equal effect size  among different species and 

individuals (with different background responses).  Note that an equal effect size does not imply 

that it will always be equally adverse in different species/individuals (such as a 5% decrease in 

hematocrit in anemic versus non-anemic persons). Severity categories in histopathological 

lesions appear to directly apply as a measure of equivalent effect magnitude.  But for endpoints 

measuring an increase in individual probability of effect, the question of how to correct for the 

background risk is not easily answered.  Various measures are being used, such as additional, 

extra or relative risk, which all correct for background in a different way. It remains unclear, 

however, which of these measures reflects an equivalent measure of risk (if any), in particular 

when background risks among species (populations) differ greatly.   
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After having chosen the effect metric, one also needs to specify a critical effect size – the 

magnitude of effect size M* of interest, as defined by the problem formulation and risk 

management context for the assessment. The term critical here should be understood in a wide 

sense, that is, it is a selected value (or even a range of values) that forms a starting point for 

doing the probabilistic calculations. Often, the problem formulation suggests that the critical 

effect size reflect the effect size that is considered to be “minimally adverse” biologically. 

However, current toxicological knowledge does not allow one to unequivocally define minimally 

adverse effect sizes for all potentially critical endpoints. Further, a given effect size might not be 

minimally adverse in one species or individual while it is minimally adverse in another (e.g., 

hematocrit and anemia, discussed above). As a practical limitation, the choice of M may be 

restricted by the available data.  For instance, the reported data may relate to discrete values of M 

only (e.g., specific severity categories of lesions, as in histopathological data).  Moreover, the 

lower the value of M, the less precise the estimates of the associated doses will be. For 

biologically-defined M*s, one might aim to specify study designs that are likely to achieve 

“adequate” statistical precision for dose estimates related to that value M*.  However, even then, 

the study design needed to achieve that goal may be impractical (e.g. unrealistic number of 

animals needed).  If so, one may decide to use a statistically-based M* (i.e., the lowest value of 

M* that achieves the desired level of statistical precision) as a surrogate.  Such statistically-based 

M*s could reflect levels of effect that are larger than minimally adverse levels, and this can be 

regarded as an additional source of uncertainty or addressed by setting a more stringent 

protection goal in terms of incidence.  Typical examples of effect metrics and critical effect sizes 

are shown in Table 3, along with the benchmark dose (BMD) approach implied, by treating all 

endpoints as fundamentally continuous.   
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 The result of the dose-response analysis is an uncertainty distribution for ADM*, the 

animal dose corresponding to M*.  Approaches to establishing the uncertainty distribution 

include (i) translating the BMD confidence limits obtained by BMD software into a distribution, 

(ii) parametric bootstrapping (Slob and Pieters 1998; implemented in the R package PROAST 

[RIVM 2012]), or (iii) Bayesian analysis (Kopylev et al. 2007). It should be noted that fitting a 

single dose-response model may not fully capture the uncertainties in the dose-response data. 

Therefore, instead of deriving a BMD distribution from a single model, various models should be 

fitted to address model uncertainty.  These model-specific distributions may be simply pooled in 

a single distribution (e.g., Slob et al. 2014), or one may apply “model averaging,” for which 

various approaches have been proposed (Bailer et al. 2005; Shao and Gift 2013; Wheeler and 

Bailer 2007).  In addition, if different dose-response datasets are available for the same endpoint, 

they could be combined in a joint dose-response analysis, with study as a covariate in the 

analysis, i.e., some of the parameters of the dose-response model are study specific, and others 

are not (Slob and Setzer 2014).  

Step 2: Adjustments due to interspecies differences and study conditions 

 The purpose of this step is to establish an uncertainty distribution for the “typical” human 

dose associated with a specified magnitude of effect and endpoint, and with specified exposure 

conditions. This step combines with the results of Step 1.   The “typical” human is defined as the 

median person of the population.  This interspecies step involves addressing three separate 

aspects:  
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• DAF: A dosimetric adjustment factor for generic physiological differences (e.g. body size 

differences for oral dose; respiratory tract differences for inhalation exposures) between 

the test animal and (median) human, along with uncertainty in the expected adjustment; 

• AHU: Animal-to-human uncertainties due to potential chemical-specific toxicokinetic or 

toxicodynamic differences between the test animal and humans resulting in differences in 

sensitivity for a given chemical; and  

• OU: Other uncertainties due to specific study conditions that differ from the target 

exposure conditions (e.g., exposure duration, or exposure pattern).  

The result of this step is an uncertainty distribution for the human dose at which 50% of the 

human population has effects greater than (or equal to) M*: 

 HD(0.5≥M*) = ADM* × DAF / (AHU × OU)  (2)   

Each of the adjustments is described in more detail below. 

Dosimetric adjustments 

 It is increasingly evident that generic differences in physiology (e.g., body size) across 

species can be accounted for by multiplying the animal dose by a dosimetric adjustment factor 

(DAF), or equivalently, by dividing by an “assessment” factor accounting for interspecies body 

size differences (AFinter-bs).   

For oral exposures, scaling doses by a fractional power of BW has been found to better 

account for interspecies differences in body size than scaling by BW as such.  Since oral doses 
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are usually expressed as mg/kg BW, a correction factor is needed to convert the doses in mg/kg 

into allometrically scaled doses.  Thus, the DAF and AFinter-bs are given by: 

 DAForal   =  (animal BW/human BW)1–α (3) 

 AFinter-bs(oral)   =  (human BW/animal BW)1–α (4) 

where α is the allometric power.  This power is not exactly known, and can be represented by a 

distribution (e.g., normal).  Because this adjustment is meant to extrapolate from the test animal 

to the median human, the average (median) animal BW in the study and the median human BW 

in the target (sub)population should ideally be used (U.S. EPA 2011b).  If these are not available, 

then standard values can be used (e.g., U.S. EPA 1988), with an uncertainty that is probably 

negligible compared to the uncertainty in the allometric power (though the BW uncertainty could 

be included in the assessment).   

 For inhalation exposures, different types of DAFs have been derived for particles 

(Regional Deposited Dose Ratio, or RDDR) and gases (Regional Gas Dose Ratio, or RGDR) 

(U.S. EPA 1994).  Based on interspecies information about respiratory tract geometries and air 

flow rates, the inhalation DAFs differ depending on whether the effects of interest are regional or 

systemic.  For example, for effects in the upper airways, DAFs are based on the surface areas of 

relevant regions of the respiratory tract and the inhalation minute-volume.  For systemic effects 

that involve transport by blood, DAFs utilize information on species differences (if any) in 

blood-air and blood-tissue partition coefficients.  As with the oral DAFs, these are meant to 

extrapolate between the (median) test animal and the median human.  Standard values, rather 

than statistically-based medians or values specific to the study, are usually employed, but clearly 
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these are uncertain as well. Thus, one could define the uncertainty in the DAF (or in the 

analogous AFinter-bs(inhalation)) by assuming lognormal residual uncertainty: 

 DAFinhalation   =  (RDDR or RGDR)×exp(εDAF) (5) 

 AFinter-bs(inhalation)   =  (RDDR or RGDR)–1×exp(εDAF) (6) 

where εDAF is normally distributed with a standard deviation of σDAF. The value of σDAF might be 

based on propagating the uncertainties in the parameters occurring in the calculations predicting 

the RDDR or RGDR or based on expert judgment.  

Chemical-specific toxicokinetic or toxicodynamics differences  

 Test animals and human beings differ not only generically (e.g., in body size), but also in 

compound-specific toxicokinetics or toxicodynamics.  Though on average across chemicals, the 

DAF is intended to neither under- nor overestimate the interspecies differences, the actual 

interspecies difference for any particular chemical is unknown in the absence of chemical-

specific data.  This uncertainty is addressed by subsequently dividing by a distribution for 

animal-to-human uncertainty (AHU) reflecting the additional differences in sensitivity between 

animal and median human beyond those addressed by the DAF, i.e., the toxicokinetic/dynamic 

differences specifically related to the chemical considered.  For instance, assuming a lognormal 

uncertainty, one could define 

 AHU   =  exp(εAHU) (7) 

where εAHU is normally distributed with a standard deviation of σAHU.  With chemical-specific 

toxicokinetic or toxicodynamic data, a CSAF or DDEF may be developed, resulting in: 
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 AHU   =  (CSAF or DDEF) × exp(εAHU) (8) 

where the standard deviation of εAHU would normally be smaller than that of the default value 

related to (6), as discussed in Supplemental Material, Chemical-specific/data-derived 

toxicokinetics or toxicodynamics.  

Additional study-specific adjustments   

 Depending on the situation (e.g., experimental set-up of a critical study, toxicity 

database), additional issues may need to be addressed to infer the equipotent dose in the median 

human under the target conditions.  Those additional adjustments and their associated 

uncertainties that are specific to the study (or endpoint) are addressed in Step 2 as well.  The 

purpose is to account for these “other uncertainties” (OU) in characterizing the uncertainty 

distribution for the median human dose associated with a specified magnitude of effect, based on 

a specified study and endpoint.  Examples of additional uncertainties include: 

• The human hazard to be assessed relates to a different duration of exposure than that in 

the study.  For instance, when the effect was in a subchronic rather than chronic study, 

the animal dose for the selected magnitude of effect might have been smaller in a chronic 

study.  Based on historical data, one can estimate the empirical distribution for the ratio 

of chronic to subchronic dose (e.g., using equipotent doses from studies of both durations 

across many chemicals).  Or, in specific situations a dose-time relationship (e.g., 

cumulative dose = constant, analogous to Haber’s law) could be postulated, along with a 

distribution reflecting the uncertainty in how accurately the relationship holds.   
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• The human hazard to be assessed relates to a different route of exposure than that in the 

study, such as inhalation versus oral.  Again, both an empirical (e.g., ratio of inhalation to 

oral equipotent doses), theoretical (e.g., based on total intake or absorbed dose), or 

model-based (e.g., physiologically-based pharmacokinetic [PBPK] model) approach can 

be used, along with a distribution reflecting the uncertainty in how accurately the 

assumed relationship is believed to hold.   

• The hazard is being assessed for a different exposure pattern than that in the study, such 

as continuous exposure in humans vs. daily bolus exposure in the test animal.  In this 

case, it is common to make assumptions about the dose-time relationship, such as peak or 

cumulative dose, as the basis for adjustment.  If multiple assumptions are plausible, the 

uncertainty among the different options can be characterized through a distribution.  For 

instance, when there is uncertainty if a given peak exposure would be equivalent to a 

three times lower or a three times higher equivalent continuous dose as compared to 

Haber’s rule, this could be reflected by taking those values as the lower 5th and upper 95th 

percentiles of the equivalent dose distribution for constant exposure.   

Note that in this step uncertainties are considered given the same magnitude of the same effect 

(endpoint).  Uncertainties with respect to possibly different effects due to missing studies, even if 

they are at a similar level of severity, are not addressed here.  This additional uncertainty is best 

addressed after completing Steps 1–3, which are all related to the specific effect under 

consideration. See Supplemental Material, Cross-study/endpoint uncertainties, for a discussion of 

some of these other additional uncertainties.  
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Step 3: Accounting for human interindividual variability in sensitivity 

 The aim of this step is to take into account differences in sensitivity across individuals in 

the population.  For an exposure limit, for example, the result would be the uncertainty 

distribution for the dose associated with a specified endpoint and magnitude of effect (M*) for a 

“sensitive” individual, defined in terms of a percentile or incidence in the population (I*).  To 

make these inferences, a population distribution representing the variation in equipotent doses 

among individuals needs to be specified.  Because there are usually limited data as to the 

magnitude of this variation, this uncertainty needs to be taken into account as well.   

 Assuming a lognormal distribution for human variability, with standard deviation σH on a 

log-scale, the relationship between M*, the incidence I≥M* of effects greater than or equal to M*, 

and human dose HD is given by 

  I≥M*(HD) = Φ[{ln HD – ln HD(0.5≥M*)}/σH], (9) 

where Φ is the standard normal cumulative distribution.  A similar relationship can be derived 

for any other assumed human variability distribution.  For an exposure limit, one selects a target 

incidence value I*≥M* and solves for dose D.  Given that the median of the distribution 

HD(0.5≥M*) was calculated in Step 2, this can be calculated by multiplying the median by the 

ratio between the I* quantile of the variability distribution and its median, denoted the human 

variability factor HVI*.  For a lognormal distribution 

  HVI* = exp{zI* σH}, (10) 

where zI* is the normal z-score corresponding to a quantile I*≥M*.  For instance, at a 5% 

incidence, z5% = –1.64; at a 1% incidence, z1%= –2.33.  Combining equations (2) and (10), the 

resulting equation is  
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  HD(I*≥M*) = ADM* × DAF × HVI*/ (AHU × OU), (11) 

 For discussion of recent analyses of human variability data, see IPCS (2014).  For 

instance, Hattis and colleagues (Hattis et al. 2002; Hattis and Lynch 2007) estimated equipotent 

doses in a number of individuals, and calculated the standard deviations σH  of the log-

transformed equipotent doses, representing the variability in sensitivity among individuals. Then, 

they fitted a lognormal distribution to these standard deviations established for different 

chemicals (studies).  They separated the available data into toxicokinetic and toxicodynamic 

factors, and estimated the uncertainty in the overall human variability as a combination of 

toxicokinetic and toxicodynamic variability.  In this way, a default uncertainty distribution for 

intraspecies variation may be defined (IPCS 2014).  

For some effects, we might suspect larger differences in sensitivity than others, or  it 

might be known that the particular target subpopulation is highly sensitive for the  agent 

considered.  Or, we might be more uncertain for some effects than for others, for instance for 

effects that did not occur in the database underlying the default distribution.  In such cases, one 

may decide to deviate from the default distribution in the appropriate direction.  If compound- 

and endpoint-specific toxicokinetic or toxicodynamic data are available, these may be used to 

define a case-specific human variability distribution, with case-specific uncertainty about that 

distribution (discussed in Supplemental Material, Chemical-specific/data-derived toxicokinetics 

or toxicodynamics).   

Monte Carlo calculation of HDM
I 

 Keeping variability and uncertainty distinct in the calculation of HDM
I requires a 

hierarchical approach to implementation.  In addition, because the individual distributions cannot 
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be combined in closed-form (particularly incorporating uncertainty in the extent of human 

variability), a Monte Carlo simulation (MC) approach is necessary (See IPCS 2014, for an 

“approximate probabilistic approach” that can be implemented in a spreadsheet without Monte 

Carlo simulation).  Specifically, at each MC iteration, all the steps addressing uncertainty are 

done first, followed by the steps evaluating variability: 

• Evaluating uncertainty: Simultaneously draw MC samples [j] from ADM*, DAF, AHU, 

OU, and σH.  Obtaining MC samples from ADM* is not a standard output from U.S. 

EPA’s Benchmark Dose Software (BMDS) (U.S. EPA 2014b), but can be generated with 

PROAST using the bootstrap method (RIVM 2012).  Bayesian methods offer another 

approach to generating such samples, and software such as WinBUGS, JAGS, or Stan 

can be used. 

• Evaluating variability: Combine (ADM*[ j]×DAF[j])/(AHU[j]×OU[j]), to obtain one 

sample of the “median” human dose HD(0.5≥M*)[j].  Next, given the target incidence I*, 

evaluate one sample of the human variability factor HVI*[j] = exp{zI* σH[j]}.  Combining 

these results is one MC sample of the human target dose associated with a particular 

incidence I* and magnitude of effect M*: HDM*
I*[j] = HD(0.5≥M*)[j] × HVI*[j] .   

• The result after many samples is the uncertainty distribution for HDM
I.  

For the illustrative datasets discussed below, this procedure was used with 107 MC samples for 

uncertainty (j) (for ADM*, 103 bootstrap samples were resampled with replacement).  Datasets 

and computer code are available in Supplemental Material (see Supplemental Material, Table S1 
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for details).  An example of this approach for an exposure limit can be found in van der Voet and 

Slob (2007) who used the term I-CED rather than HD. 

Calculating Population Incidence for Stochastic Quantal Endpoints 

 In the deterministic interpretation of quantal endpoints, the calculated incidence directly 

represents the expected incidence in the overall population.  However, in the stochastic 

interpretation the calculated incidence relates to a single individual’s probability M of 

experiencing the quantal endpoints (such as a tumor).  For this reason, the HDM
I for stochastic 

and deterministic quantal endpoints cannot be directly compared.  To make such comparison 

possible, for the stochastic interpretation, the expected incidence in the overall population needs 

to be calculated by integrating all possible values of M (Slob et al. 2014).  The calculation is 

simplified by the preceding assumption that the underlying continuous dose-response 

relationships are “monotonic and parallel on a log-dose scale across species and across 

individuals within a species.”  Specifically, let the animal dose-response function be represented 

by 

  MA(AD) = f(AD, θ) (12)  

where MA is the magnitude of effect, AD is the animal dose, and f is the dose-response function 

with parameters θ.  Based on “Step 2,” the median human has the same magnitude of response as 

the animal [i.e., MA=MH,I>50%] when the human dose HD = AD × DAF / (AHU × OU).  

Rearranging so that AD = HD × AHU × OU / DAF, the dose-response function for the median 

human will be 

  M H,I>50%(HD) = f(HD × AHU × OU / DAF, θ)  (13) 
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with the same model parameters θ.  From “Step 3,” the equipotent dose across human individuals 

is distributed lognormally with log-transformed standard deviation σH.  Therefore, the magnitude 

of effect for a particular percentile of the population with z-score z, will be  

  M H,z(HD) = f(exp[z × σH] × HD × AHU × OU / DAF, θ). (14) 

For a lognormally-distributed population of equipotent doses, z has a normal distribution.  

Therefore, the population arithmetic mean of MH will be equal to the expected value of M H,z over 

a normally distributed z: 

  < MH(HD)> = ∫ f(exp[z × σH] × HD × AHU × OU / DAF, θ) φ(z) dz (15) 

where φ(z) is the standard normal probability density.   

 In the case of a stochastic quantal endpoint, MH is the “individual probability of effect,” 

which, averaged over the population in equation (15), would be, by definition, equal to the 

expected population incidence of effect.  Uncertainties in the quantities θ, DAF, AHU, OU, and 

σH would then need to be propagated through the calculation to derive the uncertainty in this 

population incidence. 

Monte Carlo calculation of population incidence for stochastic quantal endpoints 

 As with the prototypical implementation of the unified probabilistic framework described 

above, implementing the calculation of population incidence for a stochastic quantal endpoint, 

equation (15), requires a Monte Carlo (MC) simulation.  As was the case for calculating HDM
I, 

all the steps addressing uncertainty are done first, followed by the steps evaluating variability.  In 

particular, at each value of human dose HD of interest: 
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• Evaluating uncertainty: Simultaneously draw MC samples [j] from θ, DAF, AHU, OU, 

and σH.  Note that θ, which is generally multidimensional since most dose-response 

functions have more than one fitted parameter, has replaced the scalar (one-dimensional) 

quantity ADM* from above.  Obtaining MC samples from θ is not a standard output from 

BMDS, but can be generated with PROAST using the bootstrap method.  Bayesian 

methods offer another approach to generating such samples, and software such as 

WinBUGS, JAGS, or Stan can be used.  

• Evaluating variability: Generate a human population by drawing N samples z[k] from  a 

standard normal distribution, and calculate the mean value over z of MH:  

 

 < MH(HD)>[j] = Σk=1…N f(exp[z[k] × σH[j]] × HD × AHU[j] × OU[j] / DAF[j], θ[j]) / N  

    (16) 

where N is large enough for convergence. 

 The result after many samples [j] is the uncertainty distribution for < MH(HD)>.  For a 

stochastic quantal endpoint, this then equals the expected population incidence of the quantal 

effect.  This procedure was used for the stochastic quantal treatment of tumors with 107 MC 

samples for uncertainty (j) (for θ, 103 bootstrap samples were resampled with replacement) and 

104 MC samples for variability (k).  Datasets and computer code are available in Supplemental 

Material (see Supplemental Material, Table S1 for details).   
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Illustrative Datasets Analyzed 

 Two datasets contained as examples in the PROAST software (RIVM 2012) are used to 

illustrate the approach: body weight changes in rats and forestomach tumors in male mice.  The 

tumor dataset is analyzed multiple ways – as deterministic quantal data, and as stochastic quantal 

data, and with extra risk levels of 10% and 1%.  As discussed above, the HDM
I outputs obtained 

for stochastic and deterministic quantal endpoints cannot be directly compared, so for the 

stochastic interpretation, the expected tumor incidence in the overall population is also 

calculated.   

 The uncertainty distributions for each step are based on the following: 

• The uncertainty in ADM* (= BMD at BMR=M*) is estimated via the bootstrap method in 

PROAST.  To address model uncertainty, a standard set of models is fit, with the results 

of all models having goodness-of-fit p-values > 0.05 combined with equal weight.  

• The distributions for DAF and AHU from Bokkers and Slob (2007), based on historical 

data on interspecies BMD ratios, are assumed: 

o DAF =(BW animal/BW human)(1-α), with α assumed to have a normal distribution 

with mean 0.7 and standard deviation 0.024. 

o AHU has a lognormal distribution with geometric mean 1 and geometric standard 

deviation of 2.0.  Notably, this distribution includes the current U.S. EPA default 

animal-to-human uncertainty factor (UFA) of 3 applied after application of a 

deterministic DAF within its 95% confidence interval (U.S. EPA 1994; 2011a). 
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The combined distribution for the animal-to-human adjustment, when applied to rats or 

mice, includes the commonly-used animal-to-human factor of 10 within its 95% 

confidence interval. 

• OU is omitted from the analysis (the critical study is assumed to be an adequate chronic 

study). 

• The distribution for σH is based on a reanalysis by IPCS (2014) of published human TK 

(37 datasets) and TD data (26 datasets) compiled by Hattis and Lynch (2007).  The result 

is a lognormal distribution for σH with geometric mean 0.746 and geometric standard 

deviation 1.59.  The resulting distribution for the human variability factor HVI* 

(equation 10) when evaluated at an incidence I*≤5%, includes the commonly-used 

human variability factor of 10 within its 95% confidence interval. 

Results 

 For each example dataset, the results of each step in the probabilistic approach are 

summarized in Table 4: (1) BMD modeling to estimate the animal dose-response relationship 

(see also Figure 4A and 5A), (2) probabilistic interspecies adjustments to estimate the equipotent 

doses in median humans (HDM ), and (3) probabilistic estimates of human variability to estimate 

the equipotent dose in sensitive humans (HDM
I ) (see also Figure 4B and Figures 5B-5D).   

Representative BMD modeling results are shown in Figure 4A for the continuous dataset 

(body weight changes) and Figure 5A for the quantal dataset (tumors).  For the body weight 

changes, the exponential and Hill models were fit, both of which had goodness-of-fit p-values 

> 0.05.  For tumors, the multistage, Weibull, log-logistic, log-probit, gamma, and logistic models 
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were fit, of which only the multistage model failed to have a goodness-of-fit p-value > 0.05.  

These datasets show clear dose-responses and the uncertainty in the BMD is relatively modest, 

with confidence intervals (ratio of 95th percentile to the 5th percentile) ranging from 1.5- to 4.4-

fold.   

With respect to HDM, the confidence intervals are wider due to the additional uncertainty 

in the interspecies adjustment (e.g., for Example A, 5.5/0.53=10 versus 11/5.6=2.0; see Table 4). 

Additionally, the 95th percentile of the HDM  is lower than that of the BMD, due to the allometric 

scaling factor.   

With respect to HDM
I, the confidence intervals are wider still, due to the additional 

uncertainty in intraspecies variability, and span a 40- to 60-fold range. The 5th percentile of the 

HDM
I  (underlined in Table 4, shown by the black square in Figure 4B and Figures 5B-5D) might 

be used as the “probabilistic RfD,” interpreted as the lower (one-sided) 95% confidence limit on 

the dose at which an incidence of I*=1% of the population experiences effects greater than the 

chosen critical effect size M*.  Note that the choice of percent confidence, critical effect size M*, 

and the protection incidence I* are informed by risk management considerations, and may 

depend on the specific context for the exposure limit.  In the tumor example, a lower value for 

M* (individual tumor risk) may be chosen by risk managers, even though it relates to only 1% of 

the population. Usually, however, risk managers may prefer to have an estimate of the expected 

tumor incidence in the overall population (which is worked out below).  

 Figures 4B and 5B-5D shows the 90% confidence intervals (i.e., 5th and 95th percentiles) 

for HDM
I at difference levels of incidence I as a function of exposure, for a specified value of 

M*.  With this figure in hand, the different options as to protection incidence (in combination 
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with M*) might be selected for deriving an exposure limit.  The advantage of the probabilistic 

framework is illustrated by its transparency in the output: the magnitude of effect, the fraction of 

the population protected, and percent confidence, are all explicitly and quantitatively made 

visible.  Moreover, uncertainties related to very small magnitudes of effect and/or very small 

incidences in the population can be made explicit and transparent (discussed in Supplemental 

Materials, Extrapolation to magnitudes of effect below a critical effect size and Extrapolation to 

very low incidences). 

In the deterministic interpretation of the observed tumor incidence (example B, Table 4 

and Figure 5B), the calculated incidence directly represents the expected incidence in the overall 

population.  However, in the stochastic interpretation (examples C and D, Table 4 and 

Figures 5C-5D) the calculated incidence relates to a single individual’s tumor probability M*.  

Thus, the exposure limit in the deterministic case protects the relevant fraction of the population 

(1 – I) against cancer as such, whereas the exposure limits in stochastic cases protect this fraction 

against the specified extra risk of cancer. For this reason, the outputs obtained from the 

deterministic versus the stochastic interpretation of tumor data cannot be directly compared.   

As discussed in Methods, to compare the results from both interpretations, the expected 

tumor incidence in the overall population needs to be calculated for the stochastic interpretation, 

by integrating all the incidences I over all possible values of M.  The results of this analysis, 

including uncertainty, are shown in Table 5 and Figure 6, where the confidence intervals on the 

population incidence of tumors are compared between the assumptions that tumors are 

“stochastic quantal” versus “deterministic quantal” effects.  Results from a traditional linear 

extrapolation approach are also calculated for comparison.   
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 These results clearly show that the confidence intervals for each of the two probabilistic 

approaches are wider than the difference between the confidence intervals (Figure 6 and 

Table 5). Therefore, at least in this example, the uncertainty in treating tumors as a deterministic 

versus a stochastic endpoint is not as great as the other uncertainties that have been 

characterized.  Further, in this example, the result from a traditional linear extrapolation 

approach is not lower than the lower (one-sided) 95% confidence limit, so in that sense it is not 

necessarily “conservative” at the 95% level.  The latter result was also found in various example 

cases examined by Slob et al. (2014).  

Conclusions 

 Compared to previous probabilistic approaches to dose-response assessment (Baird et al. 

1996; Evans et al. 2001; Gaylor and Kodel 2000; Hattis et al. 2002; Slob and Pieters 1998; 

Swartout et al. 1998), the framework proposed here is the first to unify across the various types 

of endpoints that may occur in toxicological studies, such as continuous vs. quantal endpoints, or 

cancer vs. noncancer endpoints.  It does so by treating all endpoints as having a (direct or 

underlying) continuous response (at the level of an individual).  It thereby fulfills the NRC 

(2009) suggestion to develop a unified approach to dose-response assessment for all endpoints.  

Furthermore, as discussed in Supplemental Material, the framework described here can 

incorporate other advances in toxicology and risk assessment, such as probabilistic exposure 

assessment (Supplemental Material, Integrating with probabilistic exposure assessment), CSAFs 

or DDEFs (Supplemental Material, Chemical-specific/data-derived toxicokinetics or 

toxicodynamics), and adverse outcome pathways (Supplemental Material, Extrapolation to 

downstream health endpoints and adverse outcome pathways and Figure S1).  
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The main idea of the framework proposed here is to quantify all relevant uncertainties by 

distributions instead of using conservative (single) values.  However, for some uncertainties, it is 

currently unclear how to quantify them.  Importantly, the uncertainty associated with the 

identification of the critical studies and endpoints is difficult to quantify, and the usual 

(deterministic) approach of focusing on the most sensitive studies and endpoints is hard to avoid.  

Consequently, even if the probabilistic approach described here is implemented, the result might 

be more conservative than it appears.  For instance, if the particular species, strain, and sex of 

animal were idiosyncratic (the effect would not occur in humans) or particularly sensitive 

compared to humans, then the derived HDM
I would be biased downwards.  Furthermore, the 

most sensitive study from a large collection of studies will likely be more “conservative” than 

the most sensitive study from a smaller number of studies.  The current approach remains 

unsatisfactory – be it in a deterministic or in a probabilistic assessment.  In the short-term, the 

uncertainties related to the choice of the biological model might be better characterized by 

carrying forth multiple species/strains/sexes and endpoints to dose-response analysis (e.g., as 

recommended by NRC 2011), resulting in multiple HDM
I estimates that reflect uncertainty in the 

chosen biological model.  Furthermore, the emergence of studies using multi-strain rodent panels 

or genetically diverse population-based rodent models (as opposed to single, homogeneous, 

inbred strains) might provide a means to partially address these uncertainties quantitatively (e.g., 

Chiu et al. 2014; Rusyn et al. 2010).  

 Additionally, even conditional on the appropriate biological model, a number of 

implementation challenges remain. However, although these issues have become more apparent 

in developing the probabilistic framework, they are equally relevant for any (deterministic) dose-
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response assessment method.  The most important conceptual issue that has not yet been 

resolved is the question of which quantal endpoints should be treated as deterministic or 

stochastic quantal endpoints. While for histopathological quantal data, the deterministic 

interpretation is obvious from first principles, it is not directly clear whether cancer or 

malformation quantal data should be treated as stochastic or as deterministic quantal data (Slob 

et al. 2014). The problem is that it is not possible to directly establish this distinction from 

interpretation of single experiments, so additional research is needed as to what methods or 

datasets can distinguish between these options.  

As a practical matter, there may be a tendency to treat more severe endpoints (such as 

tumor incidence) as stochastic since, at first sight, they seem to lead to more conservative results 

(although this may not always be the case).  If, however, an endpoint is in reality deterministic 

rather than stochastic, then the outcome from the probabilistic dose-response assessment would 

be based on experimental error rather than biological phenomena.  We repeat that this problem 

would not be specific for the probabilistic framework, but equally holds for traditional 

deterministic dose-response assessments, such as those that apply linear extrapolation.   

 Another conceptual issue related to stochastic quantal endpoints concerns the definition 

of toxicologically-equivalent effect metric for individual probability of effect (e.g., of 

malformations or cancer).  Specifically, it remains unclear how individual probability of effect 

observed in animals can be made equivalent to individual probability of effect in humans in 

situations where background risks differ greatly between test animal and humans. Correction for 

background risk can be done in various ways, such as additional, extra, or relative risk, but there 

are no conclusive scientific arguments to favor one over the other.    
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Although the framework discussed here aims to estimate health effects in the human 

population in terms of both M and I, it is often practical to choose a specific value of M (or 

maybe several) to simplify the calculations, as well as the output.  Therefore, the choice of the 

critical effect size M* (or BMR) is often relevant. For continuous endpoints, current conventions 

as to the critical effect size M* are based on a combination of biological considerations and 

statistical limitations of typical dose-response data (e.g., EFSA 2009). For instance, it was argued 

by EFSA (2009) that the transition from NOAEL to BMDL should not result in a systematic 

change in derived exposure limits in the long run, resulting in a recommended default for 

continuous endpoints of BMR = 5%.  Of course, deviations in the default are allowed if 

biologically substantiated (e.g., BMR = 20% or more for liver enzyme levels, BMR = 10% for 

cholinesterase activity).  Furthermore, one is reminded that the final output from the dose-

response assessment includes the value of M, so that it remains visible. Consequently, one might 

consider to require a lower value for I if the value of M is suspected to be higher than desirable 

from a public health perspective. For deterministic quantal endpoints, the value of M* is 

implicitly defined by the data (i.e., the associated severity category), though in some cases more 

than one category may be reported (e.g., “mild,” “moderate,” and “severe”). For stochastic 

(quantal) endpoints, M* relates to the individual probability of effect (although, in this case, the 

overall population incidence can be calculated as well, in which case M vanishes).   

 Additionally, there is of course the issue of choosing values (i.e., uncertainty 

distributions) to be used as inputs in the probabilistic dose-response assessment.  First, it should 

be noted that the uncertainty in the BMD is quantified by the BMD confidence interval. In the 

probabilistic framework, this uncertainty directly propagates through to the overall uncertainty in 
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the outcome of the dose-response assessment. In this way, it is directly visible to what extent 

designing more quantitatively informative experiments would improve a specific dose-response 

assessment, i.e., it might indicate that further improvement would substantially decrease the 

overall uncertainty in the HDM
I , or that the impact would be minor.  In terms of the adjustments 

from the POD, uncertainty distributions for particular aspects have been suggested based on 

meta-analyses of historical data (Bokkers and Slob 2005; Bokkers and Slob 2007; Hattis et al. 

2002; Hattis and Lynch 2007), and reviewed by IPCS (2014).  Thus, in those cases where no 

case-specific information for a given aspect is available, these distributions may be applied as a 

preliminary “default” distribution in probabilistic dose-response assessments. The historical data 

underlying these distributions were not generated for that purpose, and it might be argued that 

they are not always perfectly representative or highly informative.  The fact that the probabilistic 

methodology exists makes it highly valuable to gather and/or generate data that may lead to 

better-supported uncertainty distributions. Therefore, further research and exploration of 

historical data that may inform the uncertainty distributions would be highly useful. One of the 

greatest challenges is a better characterization of human toxicodynamic variability, for which 

there are much less data as compared to toxicokinetic variability.  Emerging molecular-biology 

and high-throughput systems, such as use of genetically diverse populations of human cells, offer 

some opportunities to address this data need in a more expedited fashion (Abdo et al., 2015; 

Zeise et al. 2013). 

Furthermore, we note that issues in choosing input values holds equally for non-

probabilistic dose-response assessments – the main difference is that the latter methods often use 

single default values, most of which have been generally accepted by the risk assessment 
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community, largely by convention.  However, the current single default values lead to point 

estimates with unknown level of confidence and unspecified level of the protection of the 

population.  By contrast, the probabilistic framework allows one to examine quantitatively the 

uncertainty, variability, and magnitude of effect associated with dose-response assessments using 

such conventional approaches.  In the examples worked through here using the postulated 

uncertainty distributions, the result of default approaches, such as dividing an animal BMDL by 

100 or linearly extrapolating from an allometrically-scaled animal BMDL, were higher than the 

(one-sided) 95% confidence limit of the probabilistic outputs for the protection goals, in terms of 

the magnitude of effect and population incidences illustrated.  A similar result was found in case 

studies of carcinogens by Slob et al. (2014) when comparing with linear extrapolation.  These 

results imply that these traditional deterministic approaches are not necessarily conservative in 

the sense that the derived “virtually safe” dose does not always reach 95% confidence.   

 Ultimately, as noted by the NRC (1996; 2009), a probabilistic framework will provide a 

substantially more complete quantitative characterization of hazard.  In particular, in conjunction 

with exposure data, the relative impact of different risk management options – in terms of 

magnitude of effect, incidence in the population, and degree of confidence – will be much more 

explicit and transparent.  It is envisioned that this will lead to better-informed risk management 

decisions. 
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Table 1. Components of adjustment, variability, and uncertainty in some typical Uncertainty 

Factors.  

Uncertainty 
Factor 

Adjustment Variability Uncertainty Comment 

Correcting 
dose for 
body size 

"  " Oral dose in mg/d may be adjusted to 
mg/(kgα d), where the value of α may 
be chosen to be 1 or smaller than 1; 
this value is assumed to hold 
generically, so there is no variability, 
but the value of α is uncertain.  
Generic adjustments have also been 
derived for inhalation exposures based 
on regional gas or particle dosimetry 
derived from respiratory tract 
geometry and airflow. 

Interspecies 

TK or TD 
differences 

(")a  " Assuming that the test animal and 
humans are (on the appropriate dose 
scale) equally sensitive on average 
over chemicals, no further adjustment 
is needed (i.e., the factor equals one). 
But species do differ in sensitivity 
from one chemical to another.   This 
chemical-to-chemical variability 
translates into uncertainty about the 
appropriate factor for a single 
chemical.  

Intraspecies    " " It is expected that some humans will 
be more sensitive than others, but for a 
single chemical and effect, it is 
uncertain how many of them are more 
sensitive and by how much.  So, there 
is variability, the size of which is 
uncertain. 

Subchronic-
chronic 

"  " On average over chemicals a given 
effect may be expected to occur at a 
lower dose with chronic exposure than 
with subchronic exposure (hence 
adjustment) but a single chemical may 
deviate to an uncertain degree.  

Database "  " When one study type systematically 
results in lower PODs, then 
adjustment would be needed, while a 
single chemical may deviate to an 
uncertain degree.  

a The adjustment factor is assumed to be one in this case, so that it appears to be absent in the calculations.  
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Table 2.  Summary of Unified Probabilistic Framework. 

Step and Goal New Input(s) for Each Step Output(s) for Each Step 

1. Critical effect dose in 
animal.  Estimate the 
uncertainty distribution 
for ADM*, the animal 
dose associated with the 
critical effect size M*. 

• Animal dose-response data 

• Toxicologically equivalent effect 
metric (M) 

• Critical effect size (M*) 

• Appropriate BMD analysis 

ADM* = uncertainty 
distribution for BMD 
based on analysis of 
animal dose-response 
data. 

 

2. Equipotent dose in 
median human.  Infer 
the uncertainty 
distribution for HDM* = 
HD(0.5≥M*), the human 
dose at which 50% of the 
human population has 
effects greater than or 
equal to the critical 
effect size M*. 

• ADM* from Step 1. 

• DAF, distribution for the dosimetric 
adjustment factor due to differences 
in body size between animal and 
human. 

• AHU, distribution for the “animal-to-
human uncertainties” due to 
unknown chemical+species-specific 
toxicokinetic or toxicodynamic 
differences. 

• OU , the distributions for “other 
uncertainties” due to study-/endpoint-
specific conditions that differ from 
the target conditions. 

HDM* = ADM* × DAF / (AHU 
× OU) = uncertainty 
distribution derived by 
multiplying ADM* by 
uncertain factors. 

 

3. Equipotent dose in 
sensitive human (for an 
exposure limit).  Infer 
HDM*

I* = HD(I*≥M*), the 
dose at which a target 
incidence I*≥M* yields 
effects of size ≥M*.  
Select a particular value 
HD* from the 
uncertainty distribution 
based on level of 
confidence. 

• HD(0.5≥M*) from Step 2, serving as 
the uncertainty distribution for the 
median of the human variability 
distribution. 

• A lognormal human variability 
distribution, and a separate 
uncertainty distribution for its 
variance σH

2.a 

• A target incidence I*., from which a 
human variability factor HVI* for the 
ratio between the “sensitive” and 
median individual is calculated 
[=exp(zI* σH) for a lognormal 
distribution, where zI is the normal z-
score for the I* quantile] 

HDM*
I* = HDM* × HVI* = 
uncertainty distribution 
for the I* percentile of a 
human variability 
distribution with 
median equal to HDM* 
and standard deviation 
on log scale of σH. 

aWe use a lognormal distribution for the uncertainty in the variance, but other distributions  could in 

principle be used. 
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Table 3. Example approaches to analysis of the animal dose-response data.  

Endpoint type 
(examples) 

M: Example 
toxicologically-
equivalent effect 
metric. 

M*: Example 
critical effect 
size(s) 

Benchmark dose 
approach 

Continuous 
(hematocrit, serum 
enzyme, BW, 
organ/BW ratio) 

Percent change 
relative to control 

5%, 10% (percent 
change) 

Continuous models with 
BMR= M* = 5% , 10%. 

Deterministic quantal 
(hepatic lesions, 
cytoxicity) 

Severity category “Minimal” (severity 
category) 

Quantal models for 50% 
incidence of M* = 
minimal, mild.  

Stochastic quantal 
(hepatic tumors, fetal 
resorptions, eye 
malformations) 

Extra risk for 
individual 
probability of 
occurrence 

1%, 5%, 10% (extra 
risk) 

Quantal models with 
BMR= M* = 1%, 5%, 
10%. 
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Table 4. Summary of Example Probabilistic Analyses. The two numbers between brackets represent 5th and 95th percentiles of the 

derived uncertainty distributions.  All numbers representing dose are in mg/(kg d).  

Example A B C D 

Dataset Body weight in ratsa  Forestomach tumors in 
miceb 

Forestomach tumors in 
miceb 

Forestomach tumors in 
miceb 

Type of endpoint Continuous Deterministic quantal Stochastic quantal Stochastic quantal 
M: Effect Metric % change body weight Tumor/No tumor Individual probability 

(extra risk) of tumor 
Individual probability 
(extra risk) of tumor 

M*: Critical effect size 5% Tumorc 10% extra risk 1% extra risk 
ADM*: Critical effect dose 

(BMD) in chronic 
animal study   

(5.6, 11) (5.1, 7.5) (1.7, 3.7) (0.39, 1.72) 

HDM*: Equipotent dose in 
median human    

(0.53, 5.5) (0.19, 1.9) (0.076, 0.83) (0.021, 0.33) 

I*: Target incidence 
protected  

1% 1% 1% 1% 

HDM*
I*: Equipotent dose in 

sensitive humand   
(0.031, 1.4) (0.011, 0.47) (0.0044, 0.21) (0.0013, 0.079) 

Note: Values rounded to 2 significant figures.   
aUse control BW of 0.496 kg for DAF. 
bUse standard BW of 0.03 kg for DAF. 
cFor the deterministic quantal treatment of tumors, benchmark dose analysis uses ED50. 

d“Sensitive human” is defined by the target incidence, here 1%. An exposure limit (“probabilistic RfD”) can be based the 5th percentile of the 

derived uncertainty distribution of HDM*I* (underlined), equivalent to a lower (one-sided) 95% confidence limit. 
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Table 5. Human dose at various specified tumor incidences estimated by linear extrapolation and 

by the probabilistic approach based on treating tumors as deterministic quantal versus stochastic 

quantal effects for the example tumor dataset. 

Population tumor 
incidence for 
example tumor 
dataset 

Linear extrapolation from 
allometrically scaled 
BMDL a in mg/(kg d) 

Human dose 
assuming 

deterministic 
quantal effect (5th 

and 95th 
percentiles) in 

mg/(kg d) 

Human dose 
assuming 

stochastic quantal 
effect (5th and 95th 

percentiles) in 
mg/(kg d) 

5% 0.11 (0.029, 0.67) (0.020, 0.37) 
1% 0.022 (0.011, 0.47) (0.0062, 0.17) 
0.1% 0.0022 (0.0034, 0.33) (0.0012, 0.078) 
0.01% 0.00022 (0.0013, 0.25) (0.00018, 0.040) 
aBased on U.S. EPA (2005) default approach, where the point of departure is the lower (one-sided) 95% 

confidence limit on the benchmark dose at a 10% extra risk, scaled to a human equivalent by multiplying 

by (BWanimal/BWhuman)0.25. 
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Figures Legends 

Figure 1.  Deterministic quantal endpoints: quantal responses reflecting incidences of a 

continuous response above/below a fixed cut point. The various dose-response lines in the 

upper panel reflect the (hypothetical) dose-responses of individual animals.  

Figure 2.  Stochastic quantal endpoints: quantal responses reflecting individual probability 

of effect.  The dashed curves in upper and lower panel are the same, representing the 

(hypothetical) dose-response of the median animal.  In the upper panel, the solid lines represent 

(hypothetical) individual dose-response curves.  In the lower panel, the solid line reflects the 

expected value of the observed quantal response from the population of individual responses, 

which is less steep than the dose-response of the median animal. 

Figure 3. Implementation of the unified probabilistic framework to derive the uncertainty 

distribution for HDM*I* and a corresponding probabilistic RfD.  In step 1, benchmark dose 

analysis is used to derive the uncertainty distribution for ADM*.  In step 2, this distribution is 

combined with uncertainties in dosimetric adjustment, animal-to-human toxicokinetics and 

toxicodynamics, and other study-specific limitations, to derive the uncertainty distribution for 

HDM*.  In step 3, the distribution is further combined with the uncertainty in the human 

variability factor corresponding to the selected incidence I* in the population to derive the 

uncertainty distribution for HDM*
I*.  The lower 95% (one-sided) confidence limit on HDM*

I* can 

be chosen as the “probabilistic RfD” corresponding to the selected values of M* and I*.  See 

Methods and Table 2 for additional details.  This approach is illustrated with two example 

datasets, with results shown in Table 4 and Figures 4 and 5.  

Figure 4.  Results of analysis of example continuous dataset (rat body weight changes).  

Panel A: Representative benchmark dose modeling results using the Hill model with M*=5% 

change; Panel B:  Median estimate (solid line) and 5th and 95th percentile estimates (dashed and 

dotted lines, respectively) for the incidence (I) of effects of size greater than M* (i.e., 5% change 

in body weight) as a function of population exposure (Dose), i.e, I≥M*(Dose).  For reference, also 

shown are the “probabilistic RfD” corresponding to a 1% incidence of effects of size greater than 
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M* at 95% (one-sided) confidence (solid square), the 90% (two-sided) confidence interval (CI) 

for the benchmark dose (gray shaded region), and a deterministic RfD equal to the BMDL/100 

(vertical grey line). 

Figure 5.  Results of analysis of example quantal dataset (forestomach tumors in mice).  

Panel A: Representative benchmark dose modeling results using the Weibull model.  Multiple 

benchmark dose estimates are shown, with the ED50 corresponding to M*=tumor, and the BMD10 

and BMD01 corresponding to M*=10% and 1% extra risk, respectively.   Panels B-D: Median 

estimate (solid line) and 5th and 95th percentile estimates (dashed and dotted lines) for the 

incidence (I) of effects of size greater than M* as a function of population exposure (Dose), i.e, 

I≥M*(Dose).  In panel B, mouse forestomach tumors are treated as a deterministic quantal 

endpoint, where as in panels C and D, tumors are treated as a stochastic quantal endpoint 

(C: M*=10% extra risk; D: M*=1% extra risk).  For reference, also shown in each panel are the 

“probabilistic RfD” corresponding to a 1% incidence of effects of size greater than M* at 95% 

(one-sided) confidence (solid circle) and the 90% (two-sided) confidence interval (CI) for the 

benchmark dose (gray shaded region).  

Figure 6.  Comparison of estimated human population tumor incidences as a function of 

exposure (Dose) when treating tumors as a deterministic or a stochastic endpoint. Shown 

are the 90% (two-sided) confidence intervals for human population tumor incidence calculated 

from the probabilistic approach, depending on whether tumors in the example dataset are treated 

as deterministic (solid line) or stochastic (dashed line) quantal endpoints.  For reference, also 

shown is the population tumor incidence derived using the default U.S. EPA method of linear 

extrapolation from a point of departure equal to the animal BMDL10 allometrically-scaled by 

multiplying by (BWanimal/BWhuman)0.25 (grey line).   

 

  



Environ Health Perspect DOI: 10.1289/ehp.1409385 
Advance Publication: Not Copyedited 

 

55 

Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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